Three-Dimensional Biomechanical Analysis of Rearfoot and Forefoot Running
نویسندگان
چکیده
BACKGROUND In the running community, a forefoot strike (FFS) pattern is increasingly preferred compared with a rearfoot strike (RFS) pattern. However, it has not been fully understood which strike pattern may better reduce adverse joint forces within the different joints of the lower extremity. PURPOSE To analyze the 3-dimensional (3D) stress pattern in the ankle, knee, and hip joint in runners with either a FFS or RFS pattern. STUDY DESIGN Descriptive laboratory study. METHODS In 22 runners (11 habitual rearfoot strikers, 11 habitual forefoot strikers), RFS and FFS patterns were compared at 3.0 m/s (6.7 mph) on a treadmill with integrated force plates and a 3D motion capture analysis system. This combined analysis allowed characterization of the 3D biomechanical forces differentiated for the ankle, knee, and hip joint. The maximum peak force (MPF) and maximum loading rate (LR) were determined in their 3 ordinal components: vertical, anterior-posterior (AP), and medial-lateral (ML). RESULTS For both strike patterns, the vertical components of the MPF and LR were significantly greater than their AP or ML components. In the vertical axis, FFS was generally associated with a greater MPF but significantly lower LR in all 3 joints. The AP components of MPF and LR were significantly lower for FFS in the knee joint but significantly greater in the ankle and hip joints. The ML components of MPF and LR tended to be greater for FFS but mostly did not reach a level of significance. CONCLUSION FFS and RFS were associated with different 3D stress patterns in the ankle, knee, and hip joint, although there was no global advantage of one strike pattern over the other. The multimodal individual assessment for the different anatomic regions demonstrated that FFS seems favorable for patients with unstable knee joints in the AP axis and RFS may be recommended for runners with unstable ankle joints. CLINICAL RELEVANCE Different strike patterns show different 3D stress in joints of the lower extremity. Due to either rehabilitation after injuries or training in running sports, rearfoot or forefoot running should be preferred to prevent further damage or injuries caused by inadequate biomechanical load. Runners with a history of knee joint injuries may benefit from FFS whereas RFS may be favorable for runners with a history of ankle joint injuries.
منابع مشابه
The Effects of Changing Footstrike Pattern on the Amplitude and Frequency Spectrum of Ground Reaction Forces During Running in Individuals With Pronated Feet
Background: The current study aimed to evaluate the effects of barefoot and shod running with two different styles on ground reaction force-frequency content in recreational runners with low arched feet. Methods: The statistical sample of this research was 13 males with PF (mean±SD age: 26.2±2.8 y; height: 176.1±8.4 cm; weight: 78.3±14.3 kg). A force plate (Bertec, USA) with a sample rate of 1...
متن کاملBiomechanical Differences of Foot-Strike Patterns During Running: A Systematic Review With Meta-analysis.
STUDY DESIGN Systematic review with meta-analysis. OBJECTIVES To determine the biomechanical differences between foot-strike patterns used when running. BACKGROUND Strike patterns during running have received attention in the recent literature due to their potential mechanical differences and associated injury risks. METHODS Electronic databases (MEDLINE, Embase, LILACS, SciELO, and SPORT...
متن کاملKinematic and kinetic comparison of barefoot and shod running in mid/forefoot and rearfoot strike runners.
Barefoot running has been associated with decreased stride length and switching from a rearfoot strike (RFS) pattern to a mid/forefoot strike (M/FFS) pattern. However, some individuals naturally contact the ground on their mid/forefoot, even when wearing cushioned running shoes. The purpose of this study was to determine if the mechanics of barefoot running by natural shod RFS runners differed ...
متن کاملForefoot angle determines duration and amplitude of pronation during walking.
The biomechanical mechanisms that link foot structure to injuries of the musculoskeletal system during gait are not well understood. This study had two parts. The purpose of part one was to determine the relation between clinical rearfoot and forefoot angles and foot angles as they make contact with the ground. The purpose of part two was to determine the effects of large vs. moderate values of...
متن کاملAcute effect of different minimalist shoes on foot strike pattern and kinematics in rearfoot strikers during running.
Despite the growing interest in minimalist shoes, no studies have compared the efficacy of different types of minimalist shoe models in reproducing barefoot running patterns and in eliciting biomechanical changes that make them differ from standard cushioned running shoes. The aim of this study was to investigate the acute effects of different footwear models, marketed as "minimalist" by their ...
متن کامل